Introduction

Rapid advancements in the chemical industry have helped in maintaining the high quality of life of the modern society. Unfortunately, the excessive abuse and misuse of harmful chemical materials, such as nylon, plastic, and phthalate, under the pretext of “modern society’s convenience” has given rise to various human health and environmental problems. To address such problems, leading countries/regions that dominate the chemical sector, such as the US and the European Union (EU), have been advocating green chemistry through collaborative efforts between their governments and the industry; this approach has been labeled “sustainable development.” The general idea behind green chemistry is promoting the design and use of zero- or low-toxic chemical materials and minimizing the production and emission of hazardous chemical substances by means of ecofriendly production process management.

In 1998, Anastas and Warner [1] defined “green chemistry” as the totality of activities that reduce or eliminate the generation and use of substances harmful to human health and environment in the design and production process, and application of chemical products. They presented 12 principles of green chemistry [1]: minimizing waste generation, maximizing synthetic production efficacy, using less hazardous chemical synthesis methods, using low-toxicity chemical product design, minimizing the use of auxiliary substances such as solvents, minimizing energy consumption, maximizing the use of renewable raw material, minimizing the use of derivatives, using catalysts with high selectivity, designing products degradable into innocuous materials at the end of their function, preventing the
formation of hazardous substances through real-time monitoring, and selecting materials with low risk for accidents.

In response to international regulations associated with chemical products along with increasingly stringent safety requirements, South Korea (hereafter Korea) has also been striving to apply green chemistry principles and develop green chemistry technologies. However, the evaluation of the level of compliance with the principles of green chemistry (hereafter greenness) has been carried out only at a qualitative level, exposing the limitations in quantifying the greenness compared to the state prior to the implementation of green chemistry technologies.

Against this backdrop, this study was conducted to develop an evaluation technique that enables a quantitative assessment of the greenness of green chemistry technologies. The study also tests the validity of the assessment technique by quantitatively assessing the greenness achieved in a case of material reutilization through the application of green chemistry.

Materials and Methods

We performed a preliminary analysis of various foreign cases for quantitative assessment of green chemistry and presented supplementary features by evaluating the suitability of indices and their respective proxy variables in an additional expert panel. The selected indices are 1) environment: ecological footprint, thereby classifying the substances generated during production and use of chemical products into greenhouse gases (GHGs) as an international issue and hazardous substances affecting residents’ health and living environment as a domestic issue; 2) safety: industrial chemical accidents such as explosion and fire; 3) resource: energy consumption as a social factor, and 4) economy: economic feasibility of green chemistry technologies [2]. Table S1 presents the proxy variables of each index. Each of these four indices is extracted as a value, allowing a quantitative assessment of greenness using equation (1) (Figure 1).

\[
\text{Greenness} = \alpha \cdot \sum \text{environment} + \beta \cdot \sum \text{safety} + \gamma \cdot \sum \text{resource} + \delta \cdot \sum \text{economy} \quad (1)
\]

where \(\alpha, \beta, \gamma, \) and \(\delta \) are the results of analytic hierarchy process (AHP) analysis derived via an expert questionnaire survey and denote weights for respective weights.

Environment

Environment is defined as the sum of GHGs and hazardous substances reflecting the international and local factors, respectively, and expressed by equation (2).

\[
\sum \text{Environment} = \alpha_a \cdot \sum \text{GHGs} + \alpha_b \cdot \sum \text{hazardous substances} \quad (2)
\]

Greenhouse gases

GHGs are defined as the total amount of GHG reduction, and their sum total is calculated in equation (3) in compliance with the Intergovernmental Panel on Climate Change method.

\[
\sum \text{GHGs} = t\text{CO}_2 \text{ reduction} \quad (3)
\]

- Energy consumption and GHGs are calculated after converting them into toe and t\text{CO}_2, respectively.
- GHG emissions during the production process are calculated after converting them into t\text{CO}_2.

Hazardous Substances

Hazardous substances are defined as the sum total of the health hazard factors (HHFs) and environmental hazard factors (EHFs) for assessing the harmful effects on humans and environment; their sum total is calculated in equation (4).

\[
\sum \text{Hazardous substances} = a_{a1} \cdot \sum \text{HHFs} + a_{a2} \cdot \sum \text{EHFs} \quad (4)
\]

Hazardous substances include the impact of raw materials, products/by-products, and emissions of each substance. Figure S1 presents these impact factors in a mimetic diagram.

The raw material in Figure S1 comprises the main ingredients, adjuncts, and catalysts. Products mean the final products of the production process, and by-products are concurrently generated.

Figure 1. Scope of assessment of the green chemistry technology applied in this study.
secondary products usable without further process. If a by-
product can be used for the production process, it is classified as
resource, and if it is discharged to the living environment, it is
classified as emission, such as the substances released to the en-
vironment after waste treatment, including the waste itself.

Health Hazard Factor

The HHF, i.e., the impact of a hazardous substance on the hu-
man body, is calculated with equation (5). To implement a
quantitative assessment of the HHF, carcinogenicity expressed
as Integrated Risk Information System (IRIS) categories, per-
missible exposure limit (PEL), and risk phrase (R-Phrase) for
all hazardous components involved in the production process
(raw material, products/by-products, and emissions) should be
determined and quantified with respect to a reference scale.

\[
\Sigma \text{HHF} = x_1 \cdot \Sigma \text{raw material} + y_1 \cdot \Sigma \text{products/bi-products} + z_1 \cdot \Sigma \text{emissions (5)}
\]

- IRIS categories: evaluation and quantification of carcinoge-
nicity of chemicals, the IRIS categories offered by the US Envi-
ronmental Protection Agency (EPA) are used (Table S2).
- PEL: for airborne chemicals, we referred to the Occupational
 Safety and Health Act (OSHA) as legal standard reference val-
ues. Equation (6) represents the reference scale of PEL:

\[
\text{Reference scale PEL} = \log \left(\frac{10^4}{\text{PEL}} \right) (6)
\]

- R-Phrase: the risk phrase of each hazard component is deter-
mined according to the classification of and standard for danger-
ous substances as set out in the EU Directive 67/548/EEC.

Environmental Hazard Factor

EHF, i.e., the impact of a hazardous substance on environ-
ment, is calculated with equation (7). To implement a quantita-
tive assessment of the EHF, the median effective concentration
(\(EC_{50}\)) and R-Phrase for all hazardous components involved in
the production process (raw material, products/by-products, and emissions) should be determined and quantified with re-
spect to the reference scale.

\[
\Sigma \text{EHF} = x_2 \cdot \Sigma \text{raw materials} + y_2 \cdot \Sigma \text{products/by-products} + z_2 \cdot \Sigma \text{emissions (7)}
\]

- \(EC_{50}\): the reference scale for the median or half maximal effec-
tive concentration is set out using the classification labeling of
GHS after measuring the acute toxicity to arthropods (Table S3).
- R-Phrase: The risk phrase of a hazard component is deter-
mined according to the hazardous substance classification and
standard, as set out in EU Directive 67/548/EEC.

Safety

Safety can be quantified by checking the R-Phrase of each chemi-
cal substance involved in the production process (raw material, products/by-products, and emissions) against the refer-
cence scale using equation (8).

\[
\Sigma \text{Safety} = x_2 \cdot \Sigma \text{raw materials} + y_2 \cdot \Sigma \text{products/by-products} + z_2 \cdot \Sigma \text{emissions (8)}
\]

Resource

Improvement of resource consumption means efficacious pro-
duction of chemical products by minimizing the depleting re-
sources, i.e., reduction in waste generation. To calculate the im-
provement in resource consumption, we selected raw materials
with a high resource value and materials that reflect well the
characteristics of the raw materials as a reference scale. For ex-
ample, the consumption improvement rates for organic chemi-
cal compounds and precious or rare metals are calculated in
terms of carbon efficiency and content, respectively, and ex-
pressed by equation (9).

\[
\text{Resource} = 1 - \frac{(\text{after the improvement}) (\text{raw materials, adjuncts, catalysts})}{(\text{before the improvement}) (\text{raw materials, adjuncts, catalysts})} (9)
\]

Economy

Although not included in the 12 principles of green chemistry,
it is considered essential to include the economic aspect in the
green chemistry technology assessment technique in order to
make green economy more attractive to the industry. Addition-
ally, the market share of the technology concerned can serve as
a reliable yardstick for gauging its impact on the market, and ex-
pressed by equation (10).

\[
\text{Economic feasibility} = \frac{\text{production cost reduction}}{\text{baselin expenditures}} + \frac{\text{consumer price reduction}}{\text{baselin retail price}} (10)
\]

Summary of Greenness Calculation

Table S4 gives an overview of the greenness calculation meth-
ods by index as described above in order to perform a quantita-
tive assessment of green chemistry technologies.

Results

Equipment Improvement Case

The example presented in this study is a case of reutilization of
waste acid from the pickling process of electronic parts. By installing cooling equipment to address the problem posed by excessive use of nitrogen chemicals and ensuing increase in costs for purchasing chemicals and treating waste, the acid solution could be used three times instead of discarding it after the first use, thus achieving reduction in the use of chemicals and waste treatment volume [3]. Figure 2 illustrates the simplified production process of the example case and “pre and post” comparison of economic and ecological impacts.

Green Chemistry Technology Assessment

Based on the above-described procedure, we could quantify

Table 1. Assessment results for nitric acid by index before the improvement [4-6]

<table>
<thead>
<tr>
<th>Category</th>
<th>Before the improvement</th>
<th>After the improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Nitric acid</td>
<td></td>
</tr>
<tr>
<td>CAS no.</td>
<td>71-55-6</td>
<td></td>
</tr>
<tr>
<td>Consumption during 5 yr (L)</td>
<td>389232</td>
<td>194616</td>
</tr>
<tr>
<td>R-Phrase</td>
<td>7, 8, 35</td>
<td></td>
</tr>
<tr>
<td>Health hazard factor</td>
<td>IRIS category</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PEL</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>R-Phrase</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>Max TPI</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Raw info</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TPI</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Max TPI</td>
<td>0.00</td>
</tr>
<tr>
<td>Environmental hazard factor</td>
<td>EC50</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>R-Phrase</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Max TPI</td>
<td>-</td>
</tr>
<tr>
<td>Safety</td>
<td>R-Phrase</td>
<td>R8, R35</td>
</tr>
<tr>
<td>Pollutant emissions (tonne/yr)</td>
<td>30.04</td>
<td>8.72</td>
</tr>
<tr>
<td>Pollutant treatment cost during 5 yr (10^6 KRW)</td>
<td>458.53</td>
<td>133.31</td>
</tr>
<tr>
<td>Expenditure during 5 yr (10^6 KRW)</td>
<td>237.04</td>
<td>120.62*</td>
</tr>
</tbody>
</table>

R-Phrase, risk phrase; Raw info, information of each index; N, reference scale of each index; TPI, toxic potential indicator; IRIS, Integrated Risk Information System; PEL, permissible exposure limit; EC50, median effective concentration; KRW, Korean won.

*This amount includes the investment cost amounting to 2.1x10^6 KRW.

Figure 2. Production process design of the reutilization of waste acid from the acid pickling process. (A) Improvement compare before and after of process. By installing cooling equipment to address the problem posed by excessive use of nitrogen chemicals and ensuing increase in costs for purchasing chemicals and treating waste, the acid solution could be used three times instead of discarding it after the first use. (B) The whole process and scope of assessment. (C) Economic improvement. Data from Korea Institute of Industrial Technology. Regional eco-innovation program success casebook. Cheonan: Korea Institute of Industrial Technology; 2011 [3]. KRW, Korean won.
Table 2. Assessment results for nickel nitrate by index after the improvement [4-6]

<table>
<thead>
<tr>
<th>Category</th>
<th>Before the improvement: waste data</th>
<th>After the improvement: waste data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Nickel nitrate</td>
<td>Nickel nitrate</td>
</tr>
<tr>
<td>CAS no.</td>
<td>13138-45-9</td>
<td>13138-45-9</td>
</tr>
<tr>
<td>R-Phrase</td>
<td>R49, R61, R8, R20/22, R38, R41, R42/43, R48/23, R68, R50/53</td>
<td>R49, R61, R8, R20/22, R38, R41, R42/43, R48/23, R68, R50/53</td>
</tr>
<tr>
<td>Category</td>
<td>Raw info</td>
<td>N</td>
</tr>
<tr>
<td>Health hazard factor</td>
<td>IRIS category</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PEL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>R-Phrase</td>
<td>All except R8</td>
</tr>
<tr>
<td>Environmental hazard factor</td>
<td>EC50</td>
<td>0.466</td>
</tr>
<tr>
<td>Safety</td>
<td>R-Phrase</td>
<td>R8</td>
</tr>
<tr>
<td>Pollutant emissions (tonne)</td>
<td></td>
<td>30.04</td>
</tr>
</tbody>
</table>

R-Phrase, risk phrase; Raw info, information of each index; N, reference scale of each index; TPI, toxic potential indicator; IRIS, Integrated Risk Information System; PEL, permissible exposure limit; EC50, median effective concentration.

This amount includes the investment cost amounting to 2.1x10^6 Korean won.

Table 3. Green chemistry technology assessment results

<table>
<thead>
<tr>
<th>Category</th>
<th>Weight</th>
<th>Improvement factor</th>
<th>Greenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>0.286</td>
<td>2.919</td>
<td>0.099</td>
</tr>
<tr>
<td>Hazardous substances</td>
<td>0.101</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Products</td>
<td>0.136</td>
<td>0.710</td>
<td>0.020</td>
</tr>
<tr>
<td>Emissions</td>
<td>0.157</td>
<td>0.710</td>
<td>0.111</td>
</tr>
<tr>
<td>Total (environment)</td>
<td>0.393</td>
<td>1.210</td>
<td>0.179</td>
</tr>
<tr>
<td>Safety</td>
<td>0.172</td>
<td>0.500</td>
<td>0.086</td>
</tr>
<tr>
<td>Products</td>
<td>0.148</td>
<td>0.800</td>
<td>0.118</td>
</tr>
<tr>
<td>Emissions</td>
<td>0.157</td>
<td>0.710</td>
<td>0.111</td>
</tr>
<tr>
<td>Total (safety)</td>
<td>0.393</td>
<td>1.210</td>
<td>0.179</td>
</tr>
<tr>
<td>Resource consumption</td>
<td>0.172</td>
<td>0.500</td>
<td>0.086</td>
</tr>
<tr>
<td>Economic feasibility</td>
<td>0.148</td>
<td>0.800</td>
<td>0.118</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
<td>-</td>
<td>0.483</td>
</tr>
</tbody>
</table>

Greenness=weight×improvement factor

Figure 3. Green chemistry technology assessment results. The values of greenness and improvement factor indicated in the table reflect the guarantee period of 5 years for the cooling equipment.

Figure 3 show the results of quantitative assessments of the green chemistry technology applied to the specimen equipment.

Raw information on nitrogen and nickel nitrate was sourced from the IRIS categories provided by the US EPA and their re-
spective material safety data sheets (R-Phase: EU Directive 67/548/EEC; PEL: OSHA; EC50: EPA). The costs for pollut-

ant treatment and expenditure for a 5-year period were taken from the regional eco-innovation program success casebook.

The application of the green chemistry assessment technique developed in this study revealed a 48% improvement in green-

ness compared to the state before the improvement. Breaking down 48% into individual indices, safety was found to occupy

the highest portion with 17.9%, followed by economic feasibility (17.9%), environment (9.9%), and resource (8.6%). The

weights used for the calculation were derived from the AHP analysis performed through an expert questionnaire survey.

Discussion

We proposed a novel technique for quantitative assessment of green chemistry technologies and calculated the improvement in an example case of material reutilization by quantifying the level of greenness that was achieved by implementing a green chemistry technology. The calculation results revealed an enhancement of the greenness level by 42% compared to the level before the improvement, including economic benefits. This study will serve as a basis for establishing a useful tool for evaluating the greenness of technologies from a strategic perspective for businesses to use it for setting the directions of their R&D plans and for the governments to perform objective evaluations of technologies. In particular, it is expected to greatly aid businesses in gaining competitive advantage in the global markets.

Acknowledgements

This subject is supported by Korea Ministry of Environment (MOE) as “MOE's R&D Program on environmental technology development” (no. 412-111-007), and by Korea Environment Institute (KEI, 2014-025).

Conflict of Interest

The authors have no conflicts of interest with material presented in this paper.

References

Table S1. Weight of each indicator

<table>
<thead>
<tr>
<th>Category</th>
<th>Weighta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>0.286</td>
</tr>
<tr>
<td>Environment category</td>
<td>0.286</td>
</tr>
<tr>
<td>Greenhouse gas</td>
<td>0.078</td>
</tr>
<tr>
<td>Hazardous substances</td>
<td>0.037</td>
</tr>
<tr>
<td>Health hazard factor</td>
<td>0.061</td>
</tr>
<tr>
<td>Raw material</td>
<td>0.016</td>
</tr>
<tr>
<td>Products</td>
<td>0.020</td>
</tr>
<tr>
<td>Emissions</td>
<td>0.028</td>
</tr>
<tr>
<td>Environmental hazard factor</td>
<td>0.017</td>
</tr>
<tr>
<td>Raw material</td>
<td>0.101</td>
</tr>
<tr>
<td>Products</td>
<td>0.136</td>
</tr>
<tr>
<td>Emissions</td>
<td>0.157</td>
</tr>
<tr>
<td>Safety</td>
<td>0.393</td>
</tr>
<tr>
<td>Safety category</td>
<td>0.393</td>
</tr>
<tr>
<td>Raw material</td>
<td>0.101</td>
</tr>
<tr>
<td>Products</td>
<td>0.136</td>
</tr>
<tr>
<td>Emissions</td>
<td>0.157</td>
</tr>
<tr>
<td>Resource consumption</td>
<td>0.172</td>
</tr>
<tr>
<td>Economic feasibility</td>
<td>0.148</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Rounding off at the 5th decimal place.
Table S2. Integrated Risk Information System (IRIS) carcinogen classification criteria

<table>
<thead>
<tr>
<th>IRIS category</th>
<th>Description</th>
<th>Reference scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Human carcinogen</td>
<td>7</td>
</tr>
<tr>
<td>Group B</td>
<td>Probable human carcinogen</td>
<td>7</td>
</tr>
<tr>
<td>Group B1</td>
<td>Indicative of a limited causal relationship in epidemiological research</td>
<td>7</td>
</tr>
<tr>
<td>Group B2</td>
<td>Indicative of a sufficient causal relationship in animals, with little or no human data</td>
<td>7</td>
</tr>
<tr>
<td>Group C</td>
<td>Possible human carcinogen</td>
<td>7</td>
</tr>
<tr>
<td>Group D</td>
<td>Not classifiable as to human carcinogen</td>
<td>6</td>
</tr>
<tr>
<td>Group E</td>
<td>Evidence of non-carcinogen for human</td>
<td>4</td>
</tr>
</tbody>
</table>
Table S3. Classification table of the median effective concentration (EC$_{50}$)

<table>
<thead>
<tr>
<th>Category</th>
<th>Acute category 1</th>
<th>Acute category 2</th>
<th>Acute category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC$_{50}$ range (mg/L)</td>
<td>EC$_{50} \leq 1.00$</td>
<td>1.00 < EC$_{50} \leq 10.0$</td>
<td>10.0 < EC$_{50} < 100$</td>
</tr>
<tr>
<td>Reference scale</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Table S4. Green chemistry technology assessment index/proxy variable with related data

<table>
<thead>
<tr>
<th>Index</th>
<th>Proxy variable</th>
<th>Related data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>GHG</td>
<td>GHG emissions</td>
</tr>
<tr>
<td>Hazardous</td>
<td>IRIS category</td>
<td>- kg-CO<sub>2</sub> conversion</td>
</tr>
<tr>
<td>Substances</td>
<td>PEL</td>
<td>- IRIS (US EPA)</td>
</tr>
<tr>
<td></td>
<td>R-Phrase</td>
<td>- PEL (OSHA)</td>
</tr>
<tr>
<td></td>
<td>EC<sub>50</sub></td>
<td>- EU Directive 67/548/EEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- EC<sub>50</sub> (US EPA_ECOTOX)</td>
</tr>
<tr>
<td>Safety</td>
<td>Risk for explosion/fire</td>
<td>R-Phrase</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource consumption</td>
<td>- Material balance (GHG, metal)</td>
</tr>
<tr>
<td>Economy</td>
<td>Production cost/retail</td>
<td>- Production cost: actual or estimated</td>
</tr>
<tr>
<td></td>
<td>price</td>
<td>- Retail price: actual or estimated</td>
</tr>
</tbody>
</table>

GHG, greenhouse gas; IRIS, Integrated Risk Information System; EPA, Environmental Protection Agency; PEL, permissible exposure limit; OSHA, Occupational Safety and Health Administration; EU, European Union; EC50, median effective concentration; R-Phrase, risk phrase.
Hazardous substances

- Health hazard factor
 - Raw material
 - Products, by-products
 - Emissions

- Environmental hazard factor
 - Raw material
 - Products, by-products
 - Emissions

Figure S1. Mimetic diagram for the hazard factors of hazardous substances for human body and environment.