| Home | E-Submission | Sitemap | Contact Us |  
top_img
Journal of Environmental Toxicology 2003;18(2):89-94.
유기주석화합물이 웅성생식세포주에 미치는 영향
이경진
Mechanisms of Tributyltin-induced Leydig Cell Apoptosis
Kyung Jin Lee 외 6명
ABSTRACT
Tributyltin(TBT) used world-wide in antifouling paints for ships is a widespread environmental pollutant and cause reproductive organs atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reprodctive organs by TBT. In this study, we investigated that the mechnisms underlying DNA fragmentation induced by TBT in the rat leydig cell line, R2C. Effects of TBT on intracellular Ca^(2+) level and reactive oxygen species(ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular Ca^(2+) level in a time-dependent manner. The rise in intracellular Ca^(2+) level was followed by a time-dependent generation of reactive oxygen species(ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca^(2+) chelator, indicating the important role of C^(2+) in R2C during these early intracellular events. In addition, Z-DEVD FMK, a caspase-3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular Ca^(2+) level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
CrossRef TDM  CrossRef TDM
  E-Mail
Share:      
METRICS
1,539
View
3
Download
The Mechanism of the Neurotoxicity Induced by Cadmium  2004 September;19(3)
Editorial Office
Division of Environmental Science and Ecological Engineering, Korea University
145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Tel : +82-32-560-7520   E-mail: envitoxic@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © 2022 by The Korean Society of Environmental Health and Toxicology & Korea Society for Environmental Analysis.     Developed in M2PI